A FILTER FOR INVESTIGATION AND RECOGNITION OF MALICIOUS WEB PAGES

1Nancy, 2Ankur Bindal
Assistant Professor, Dept. Of CSE, MMEC
Assistant Professor, Dept. Of ECE, MMEC

ABSTRACT - Internet services are more necessary part of our daily life. We rely growingly on the ease and flexibility of Internet connected devices to shop, communicate and in general perform tasks that would require our physical presence. While very valuable, Internet transactions can represent user sensitive information. Banking sector’s and personal medical records, system authorization passwords and personal communication records can easily become known to an enemy who can easily compromise any of the devices include in online transactions. Regrettably, In this transaction the user’s personal computer seems to be the weakest link. At the same time attacker also use new attacks for identification of user’s sensitive information with vulnerabilities that use a small part of code in web pages. Overcome these problems use a novel approach for a filtering technique to finding malicious web pages very effectively and efficiently using supervised machine learning. Also detailed study some other techniques researcher research to analysis and detection of malicious web pages.

Keywords— Malicious web page analysis, drive-by download exploits, efficient web page filtering.

1. INTRODUCTION

Today’s internet has become an fundamental part in the life of hundreds of millions of people who usually use online services to accumulate and manage delicate information. At the same time attacker also search a new way or number of attacks to harm user’s delicate or important information. Using that information they target vulnerability in a web browser.
II. LITERATURE SURVEY

Related to this system researchers research many system and some drawbacks, problems are arises. Niels Provos et al. they described a number of server- and client-side exploitation techniques that are used to spread malware, and elucidated the mechanisms by which a successful exploitation chain can start and continue to the automatic installation of malware.

As well as they described present a detailed analysis of the malware serving infrastructure on the web using a large amount of malicious URLs. Using this data, they estimate the global prevalence of drive-by downloads, and identify several trends for different aspects of the web malware problem and some analysis of distribution sites and network.

Fig. 2.1 shows typical interaction that takes place when a user visits a website with injected malicious content. Upon visiting this website, the browser downloads the initial exploit script. The exploit script (in most cases, JavaScript) targets vulnerability in the browser or one of its plugins. Successful exploitation of one of these vulnerabilities results in the automatic execution of the exploit code, thereby triggering a drive-by download.

Our study uses a large scale data collection infrastructure that continuously detects and monitors the behavior of websites that perpetrate drive-by downloads. Our in-depth analysis of over 66 million URLs (spanning a 10 month period) reveals that the scope of the problem is significant. For instance, we find that 1.3% of the incoming search queries to Google’s search engine return at least one link to a malicious site. Their results, on roughly 17,000 URLs, showed that about 200 of these were dangerous to users [2].

Fig. 2.1: A typical Interaction with of drive-by download victim with a landing URL.

Marco Cova et al. described that they design detection and analysis of malicious JavaScript code using this approach combines irregular detection with emulation to automatically identify malicious Java-Script code and to support its analysis. They implement a novel approach to the automatic detection and analysis of malicious web pages. For this, we visit web pages with an instrumented browser and record events that occur during the interpretation of HTML elements and the execution of JavaScript code. For each event (e.g., the instantiation of an ActiveX control via JavaScript code or the retrieval of an external resource via an iframe tag), we extract one or more features whose values are evaluated using anomaly detection techniques. Anomalous features allow us to identify malicious content even in the case of previously-unseen attacks. Our features are comprehensive and model many properties that capture intrinsic characteristics of attacks. Moreover, our system provides additional details about the attack. For example, it identifies the exploits that are used and the Obfuscated version of the code, which are helpful to explain how the attack was executed and for performing additional analysis. We implemented our approach in a tool called JSAND (JavaScript Anomaly-based analysis and Detection), and validated it on over 140,000 web pages.

Using seven datasets the results of the evaluation shows that it is possible to reliably detect malicious code by its behavior of the code and comparing this behavior with a normal Java-Script execution [3]. In summary, our results indicate that JSAND achieves A Detection rate that is significantly better than state-of-the-art tools. It detected a large number of malicious pages not detected by other tools, and it missed only a very limited number of attacks. Furthermore, in our tests, JSAND analyzed about two samples per minute, which is faster than other tools. Since the analysis can be easily parallelized, performance can be further improved.

John P. John et al. described that they presented SearchAudit, a suspicious-query generation framework that identifies malicious queries by auditing search engine logs. While auditing is an important component of system security. SearchAudit is a framework that identifies malicious queries from massive search engine logs in order to uncover their relationship with potential attacks. SearchAudit takes in a small set of malicious queries as seed, expands the set using search logs, and generates regular expressions for detecting new malicious queries.
Working with SearchAudit consists of two stages:

1. Identification: SearchAudit identifies malicious queries.
2. Investigation: With SearchAudit assistance, they focus on analyzing those queries and the attacks of which they are part. The analysis shows that the identification of malicious searches can help detect and prevent large-scale attacks [4].

Overall, SearchAudit identifies over 40,000 IPs issuing more than 4 million malicious queries, resulting in over 17 million page views.

III. IMPLEMENTATION DETAILS

A. System Architecture

The features extraction from web pages is depend on if a web page is malicious or not. Using dynamic approaches it is possible to perform the analysis faster. The feature extraction of pages basically works on two main source of information such as the page content and the page URL.

Fig. 3. System Architecture

The complete system architecture is shown in figure 1. Major components of the projected system are as follows:

- **WebCrawler**: Web crawler fetch a list of seed URLs fetched daily from search engines such as Google, Yahoo and Bing etc. Web crawler also extracts a list of links from a spam emails. The list of links is updated daily. Some of the malicious web pages execute malicious content only when the request is made. The malicious contents are appears when a user clicking on the search results.

- **Prophiler**: The extracted pages extracted by web crawler will submit to the Prophiler. Prophiler analyzes each page and extracts all the features of pages and stores them. Prophiler uses the models to evaluate its maliciousness on the basis of features extracted by an algorithm.

B. Feature Extraction

The features extraction from web pages is depend on if a web page is malicious or not. Using dynamic approaches it is possible to perform the analysis faster. The feature extraction of pages basically works on two main source of information such as the page content and the page URL. Using that type of information use to extract the some features such as:

- **HTML Features**: This header has to be set to the search engine from which the seed URL was extracted.

 - **Prophiler**: The extracted pages extracted by web crawler will submit to the Prophiler. Prophiler analyzes each page and extracts all the features of pages and stores them. Prophiler uses the models to evaluate its maliciousness on the basis of features extracted by an algorithm.

- **JAVA SCRIPT Features**: This type of features result based on static analysis. Similarly to HTML features, JavaScript features are both statistical and lexical. Most malicious JavaScript scripts are difficult analysis time. In some cases, malware authors adopt encryption scheme and techniques to prevent code debugging. This implemented the extraction of some statistical measures. It also considers the structure of the Java Script code itself. A number of features is based on the analysis of the Abstract Syntax Tree (AST) extracted using the parser.

- **URL & HOST BASED Features**: This header has to be set to the search engine from which the seed URL was extracted.
This feature helps to detect this page is malicious or not. Even though detecting drive-by download pages using URL features is more different than in the case of phishing pages or scam pages, some information enclosed in the URL and coupled with the referenced swarm is used to assist in the detection.

IV. RESULT & ANALYSIS

The experimental results of this system are getting after giving the input to the WebCrawler from the Internet i.e. website URLs as shown in fig:4. The WebCrawler module which is responsible for extracting URLs from different sources within a web page work relatively efficient. Table 1 shows the extraction efficiency for the initial WebCrawler.

![Image](URL Extractor Image)

Fig.4. Output

We see that WebCrawler is able to extract links from a wide range of content types and especially HTML pages contain many links that we can use for our crawl. We need to consider that only discovered links which do pass the requirements are queued for crawling. These requirements do contain, among others, whether a URL is already queued or downloaded, if a URL is still unique after normalization, and if a URL is in the scope of the crawl.

<table>
<thead>
<tr>
<th>Module</th>
<th>Handled Objects</th>
<th>Extracted Links</th>
<th>Links / Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Extractor</td>
<td>6,487,350</td>
<td>735,538</td>
<td>0.11</td>
</tr>
<tr>
<td>HTML Extractor</td>
<td>4,132,168</td>
<td>345,231,030</td>
<td>83.55</td>
</tr>
<tr>
<td>CSS Extractor</td>
<td>19,881</td>
<td>88,307</td>
<td>4.44</td>
</tr>
<tr>
<td>JS Extractor</td>
<td>21,658</td>
<td>162,291</td>
<td>7.49</td>
</tr>
<tr>
<td>SWF Extractor</td>
<td>17,921</td>
<td>11,117</td>
<td>0.62</td>
</tr>
<tr>
<td>URL Extractor</td>
<td>6,506,489</td>
<td>6,776,544</td>
<td>1.04</td>
</tr>
<tr>
<td>XML Extractor</td>
<td>35,165</td>
<td>1,638,260</td>
<td>46.59</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

In this paper describe a novel approach for a filtering technique to finding malicious web pages very effectively and efficiently using supervised machine learning. It observes existing systems with their problems in various situations and provides detailed study of some other techniques for researcher to research to analysis and detection of malicious web pages. It does summarize that feature extraction technique used in this system affects the overall performance of system. Then projected a comprehensive scheme that addresses all security issues like integrity, privacy, confidentiality simply throughout webpage feature extraction.

From initial results, it is proven that webpage feature extractions are much important in malicious web page detection project. Future work of this project will be implementation of advanced feature extraction algorithms which able to give high security to identify malicious web pages. Also As per the result using large scale detection datasets 85% of accuracy shows for analysis and detection of malicious web pages.

REFERENCES

